Quality impact, with the use of more than three sigmas in the statistical control of processes by variables

Main Article Content

José Luis Hidalgo Torres

Abstract

The main objective of this study is to show how the use of more than ± 3? in the formulas to determine the limits of the variables in the statistical process control charts affects the quality of the manufactured products and, consequently, the final consumer. In the research process, the induction and description methods were used to determine the required values of the parameters, constants and others used, which allow showing the proposed objective. The results in this study indicate that the use of more than ± 3? in the statistical process control formulas by variables can have a negative impact on the quality of the final product. This is because the use of wider limits may allow more variability in the process to go undetected, which may result in more defective or out-of-specification products. Consequently, this can negatively affect customer satisfaction and company reputation. Therefore, it is important to take these findings into account when setting control limits on statistical process control charts.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hidalgo Torres, J. L. (2023). Quality impact, with the use of more than three sigmas in the statistical control of processes by variables. Journal of Business and Entrepreneurial Studie, 7(3). https://doi.org/10.37956/jbes.v7i3.340
Section
Articles

References

Álvarez_Borrego, J. (2016). Control Estadístico De Procesos. Mexico: Universidad Nacional Abierta y a Distancia. Retrieved from http://docplayer.es/5576381-Control-estadistico-deprocesos-dr-josue-alvarez-borrego.html

Cabezón_Gutiérrez, S. (2014). Quality Control in Industrial Production. Valladolid: Universidad De Valladolid, Escuela De Ingenierías Industriales, Grado en Ingeniería de Organización Industrial.

Gutiérrez_Pulido, H. (2009). Statistical Quality Control And Six Sigma. Guadalajara: Mcgraw-Hill/Interamericana Editores, S.A. De C.V.

Kelmansky, D. (2009). Estadística para todos- Estrategias de pensamiento y herramientas para la solución de problemas. Buenos Aires: Ministerio de Educación de la Nación- Instituto Nacional de Educación Tecnológica.

Montgomery, D. C. (2009). Introduction to Statistical Quality Control. Arizona State: John Wiley & Sons, Inc.

Rendón_C., H. (2013). Statistical quality control. Medellín: Universidad Nacional de Colombia. Faculty of Mines.

Ruiz, A., & Rojas, F. (2006). Control Estadístico De Procesos, 1. Apuntes De Clase. Madrid: Universidad Pontificia Comillas.

Walpole, R. E., Myers, R. H., & Ye, K. (2012). Probability And Statistics For Engineering And Science. Mexico: Pearson Educacion.